SPM Mathematics Trial 2021 (Selangor), Paper 2 (Question 13)


Question 13:
Data in Table 1 shows the height, in cm, of a group of 10 volleyball players.

142168162154172
162157158169181
Table 1

(a)
Determine 
(i) the first quartile
(ii) median
(iii) the third quartile
(iv) the interquartile range
[4 marks]


(b) Table 2.1 shows the number of words typed by a group of participants in a Shorthand and Secretarial Workshop within the duration of 5 minutes.

Number of wordsFrequency
121 – 1256
126 – 1309
131 – 13513
136 – 14018
141 – 14514
146 – 15010
Table 2.1

Complete Table 2.2 in the answer space 13(b).
Calculate standard deviation of the data.
[6 marks]

Answer:
(b)
fMidpointfxx2fx2
6123
9128
13133
18138
14143
10148
Σ f = 70Σ fxΣ x2Σ fx2


Solution:

142, 154, 157 (Q1), 158, 162, | 162, 168, 169 (Q3), 172, 183

(a)(i) the first quartile, Q1 = 157

(a)(ii) median= 162+162 2 =162

(a)(iii) the third quartile, Q3 = 169

(a)(iv) the interquartile range = Q– Q= 169 – 157 = 12


(b)
fMidpointfxx2fx2
612373815 12990 774
91281 15216 384147 456
131331 72917 689229 957
181382 48419 044342 792
141432 00220 449286 286
101481 48021 904219 040
Σ f = 70Σ fx = 9 585Σ x2 = 110 599Σ fx2 = 1 316 305


Mean,  x ¯ = fx f   = 9 585 70   =136.9286 Standard deviation, σ = f x 2 f ( x ¯ ) 2 = 1 316 305 70 ( 136.9286 ) 2 = 54.9156 =7.41



Leave a Comment