SPM Mathematics Trial 2021 (Kelantan), Paper 2 (Question 11)


Question 11:
The mean for the set number k, k + 4, k + 8, 3k – 4, 2k + 3, k – 1 and 4k is 7
(a) Find the value of k [3 marks]
(b) Find the interquartile range [2 marks]
(c) Find the standard deviation [3 marks]


Solution:
(a)

Mean,  x ¯ = x N Given mean = 7 7= k+k+4+k+8+3k4+2k+3+k1+4k 7 49=13k+10 13k=39 k= 39 13   =3


(b)
Interquartile range = Third quartile (Q3) – first quartile (Q1)

Substitute k into each of the set number,
3, 3 + 4, 3 + 8, 3(3) – 4, 2(3) + 3, 3 – 1 and 4(3)
3, 7, 11, 5, 9, 2 and 12

Arrange the set number in ascending order,
2, 3 (Q1), 5, 7 (Q2), 9, 11 (Q3), 12

Thus, the interquartile range = 11 – 3 = 8


(c)

Standard deviation, σ= x 2 N ( x ¯ ) 2 = 2 2 + 3 2 + 5 2 + 7 2 + 9 2 + 11 2 + 12 2 7 ( 7 ) 2 = 433 7 49 =3.586

Leave a Comment