2.5 Quadratic Equations, SPM Paper 2 (Long Questions)

Question 9:Solve the following quadratic equation:4x (x + 4) = 9 + 16xSolution: 4x( x+4 )=9+16x 4 x 2 +16x=9+16x    4 x 2 −9=0 ( 2x ) 2 − 3 2 =0 ( 2x+3 )( 2x−3 )=0 2x+3=0     or     2x−3=0      2x=−3                2x=3        x=− 3 2                  x= 3 2     Question 10:Solve the following quadratic equation:(x + 2)2 = … Read more2.5 Quadratic Equations, SPM Paper 2 (Long Questions)

Roots of Quadratic Equation Example 3 & 4

Example 3 Solve the quadratic equation 5 x 2 =3(x+2)−4. Solution: 5 x 2 =3(x+2)−4 5 x 2 =3x+6−4 5 x 2 −3x−2=0 ( 5x+2 )( x−1 )=0 5x+2=0       or     x−1=0        x=− 2 5                  x=1 Example 4 Solve the quadratic equation  3x(x−3) 4 =−x+3. Solution: 3x(x−3) 4 =−x+3 3 x 2 −9x=−4x+12 3 x 2 −5x−12=0 ( 3x+4 )( x−3 )=0 3x+4=0       or     x−3=0        x=− 4 3                  x=3

2.4 Roots of Quadratic Equations

2.4 Roots of Quadratic Equations 1. A root of quadratic equation is the value of the unknown which satisfies the quadratic equation. 2. Roots of an equation are also called the solution of an equation. 3. To solve a quadratic equation by the factorisation method, follow the steps below: Step 1: Express the quadratic equation in general form ax2 … Read more2.4 Roots of Quadratic Equations