Processing math: 100%

2.5.1 Multiplication of Two Matrices (Examples)


Example 1:
Find the product of the following pairs of matrices.
(a) (1  5  2)(243)(b) (2831)(1042)(c) (35)(2 6)(d) (0413)(72)(e) (7 4)(2013)

Solution:
(a) (1  5  2)(243)Matrices analysis1×3 and 3×1   =1×1 matrix=(1×2  5×4  2×3)=(2+20+6)=(28)

(b)

(2831)(1042)Matrices analysis2×2 and 2×2 =2×2 matrix=(2×1+8×4  2×0+8×23×1+1×4  3×0+1×2)=(341612)

(c)

(35)(2 6)Matrices analysis2×1 and 1×2    =2×2 matrix=(3×2  3×65×2 5×6)=(6181030)

(d)

(0413)(72)Matrices analysis2×2 and 2×1    =2×1 matrix=(0×7+4×21×7+3×2)=(813)

(e)

(7 4)(2013)Matrices analysis1×2 and 2×2 =1×2 matrix=(7×2+(4×1)7×0+(4×3))=(14+4  012)=(1012)



Example 2:
Find the values of m and n in each of the following matrix equations.
(a)(3m)(1 n)=(31228)(b)(m231)(2n)=(124+2n)(c)(m311)(124n)=(141153)
 
Solution:
(a)(3m)(1 n)=(31228)(33nmmn)=(31228)m=2, 3n=12n=4

(b)(m231)(2n)=(124+2n)(2m+2n6+n)=(124+2n)6+n=4+2nn=102m+2n=122m+2(10)=122m20=122m=32m=16

(c)(m311)(124n)=(141153)(m+(12)2m+(3n)1+42+n)=(141153)m12=14m=2m=22+n=3n=5


Leave a Comment