8.4.4 Measures of Dispersion for Ungrouped Data, SPM Paper (Long Questions)


Question 7:
A set of data consists of twelve positive numbers.
It is given that Σ(xˉx)2=600 and Σx2=1032.It is given that Σ(x¯x)2=600 and Σx2=1032.
Find
(a) the variance
(b) the mean

Solution:
(a)
Variance=Σ(xˉx)2N              =60012              =50Variance=Σ(x¯x)2N              =60012              =50

(b)
Variance=Σx2N(ˉx)2          50=103212(ˉx)2      (ˉx)2=8650             =36           ˉx=36Variance=Σx2N(¯x)2          50=103212(¯x)2      (¯x)2=8650             =36           ¯x=36

Question 8:
A set of examination marks x1, x2, x3, x4, x5, x6 has a mean of 6 and a standard deviation of 2.4.
(a) Find
(i) the sum of the marks, ΣxΣx ,
(ii) the sum of the squares of the marks, Σx2Σx2 .

(b)
Each mark is multiplied by 2 and then 3 is added to it.
Find, for the new set of marks,
(i) the mean,
(ii) the variance.

Solution:
(a)(i)
Given mean=6Σx6=6Σx=36Given mean=6Σx6=6Σx=36

(a)(ii)
Given σ=2.4σ2=2.42Σx2nˉX2=5.76Σx2662=5.76Σx26=41.76Σx2=250.56Given σ=2.4σ2=2.42Σx2n¯¯¯X2=5.76Σx2662=5.76Σx26=41.76Σx2=250.56

(b)(i)
Mean of the new set of numbers
= 6(2) + 3
= 15

(b)(ii) 
Variance of the original set of numbers
 = 2.42 = 5.76

Variance of the new set of numbers
= 22 (5.76)
= 23.04

Leave a Comment