 # 1.2.1 Standard Form (Part 1)

1.2.1 Standard Form (Part 1)
1. Standard form is a way of writing very large numbers or very small numbers in the form of A × 10n, where  $1\le A<10$  and n is a positive or a negative integer.

Example 1:
Express each of the following numbers in standard form.
(a) 7244
(b) 32567
(c) 750000
(d) 0.65
(e) 0.0428
(f) 0.000369

Solution:
(a) 7244 = 7.244 × 1000 = 7.244 × 103

(b) 32567 = 3.2567 × 10000 = 3.2567 × 104

(c) 750000 = 7.5 × 100000 = 7.5 × 105

(d) 0.65
$=6.5×\frac{1}{10}$
= 6.5 × 10-1

(e) 0.0428
$=4.28×\frac{1}{100}$
= 4.28 × 10-2

(f) 0.000369
$=3.69×\frac{1}{10000}$
= 3.69 × 10-4

Example 2:
Express each of the following numbers in standard form.
(a) 63.4
(b) 2738
(c) 23000
(d) 428000000
(e) 0.0063
(f) 0.000000038

Solution
:

(a) 63.4 = 6.34 × 10

(b) 2738 = 2.738 × 1000 = 2.738 × 10³

(c) 23000 = 2.3 × 10000 = 2.3 × 104

(d) 428000000 = 4.28 × 100000000 = 4.28 × 108

(e) 0.0063
$=6.3×\frac{1}{1000}$
= 6.3 × 10-3

(f) 0.000000038
$=3.8×\frac{1}{100000000}$
= 3.8 × 10-8

### 2 thoughts on “1.2.1 Standard Form (Part 1)”

1. Hey there
exmaple 2d) there are 6 zer0s shown but the solutions ONLY got 5 zer0s ‘ 🙁

• Dear Gabriel,
thanks again for pointing out our mistake, correction had been made accordingly.